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TREND-FREE BLOCK DESIGNS: THEORY1

by
Ralph A. Bradley and Ching-iling Yeh
Florida State University

A common polynomial trend in one or more dimensions is assumed to exist
over the plots in each block of a classical experimental design. An analysis
of covariance model is assumed with trend components represented through use of
orthogonal polynomials. The objective is to construct new designs through the
assignment of treatments to plots within blocks in such a way that sums of
squares for treatments and blocks are calculated as though there were no trend
and sums of squares for trend components and error are calculated easily. Such
designs are called trend-free and a necessary and sufficient condition for a
trend-free design is developed. It is shown that these designs satisfy optimality
criteria among the class of connected designs with the same incidence matrix.
The analysis of variance for trend-free designs is developed. The paper concludes

with two examples of trend-free designs.

1Research supported by the Army, Navy and Air Force under Office of Naval Research
Contract No. N00014-76-C-0608. Reproduction in whole or in part is permitted for
any purpose of the United States Government.
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1. DMotivation, introduction and summary. Various experimental designs have

been considered for the two-way elimination of heterogeneity, the latin square
being the best known. .lany experimental situations arise in which response may
be affected by the spatial or temporal position of the experimental unit or plot
within a block and, frequently, an assumption of a common polynomial trend of
specified degree over plots within blocks may be appropriate. The v x vy latin
square may be used to eliminate the effects of a common, one-dimensional,
polynomial trend to degree v - 1 over the nlots in rows of the square. Oues-
tions of criteria for and the optimality of other block designs, complete or
incomplete, that eliminate the effects of common polynomial trends of specified
degree over the plots within blocks are investigated. Examination of the exist-
ence and construction of the desired designs is deferred to a subsequent paper.
Experimental designs to be used in the presence of trends to avoid the
complications ofanalysis of covariance and to increase design efficiencies have
been developed by others. Cox (1951, 1952, 1958) considered the assignment of
treatments to plots ordered in space or time without blocking and with a trend
extending over the entire sequence of plots. Box (1952) and Box and Hay (1953)
in similar experimental sequences investigated choices of levels of quantitative
factors. Hill (1960) combined the designs of Cox and Box to form new designs
to study the effects of both qualitative and quantitative factors in the presence
of trends. Daniel and Wilcoxon (1966) and Daniel (1976, Chap. 15) provided
methods of sequencing the assignments of factorial treatment combinations to

experimental units to achieve better estimation of specified factorial effects,

again in the presence of a trend in time or distance. Phillips (1964, 1968a, 1968b)

illustrated the use of magic figures (magic squares, magic rectangles, etc) for




the elimination of trend effects in certain classes of one-way, factorial, latin-
square, and graeco-latin-square designs; a ‘siizle trend was assumed again to
affect 3.1 of the observations.

We consider block designs to compare v treatments in b blocks of equal size
k <V such that each treatment occurs at most once in each block. A common
polynomial trend is assumed to exist over the plots in each block. The trend may
be in one or several dimensions and is expressed in terms of p < (k - 1) ortho-
gonal components. The appropriate classical fixed-effects model for the
genaral block design and its assumptions are used with the addition of orthogonal
terms representing the assumed trend. The problem is to assign treatments to |
plots within blocks so that the known properties of the ordinary analysis of
variance for treatment and block sums of squares are preserved and variation
due to the trend may be removed from the error sum of squares. VWhen the desired
designs exist, we shall call them trend-free designs. We shall abbreviate and,
for example, use TFPCB for a complete block design free of a common, one-
dimensional trend of degree p within blocks and TFPBIB and TFPPBIB for similar
balanced and partially balanced incomplete block designs. Additional subscripts
may be added if the trend is in several dimensions.

In this paper, necessary and sufficient conditions for the existence of
trend-free block (TFB) designs are obtained, necessary analysis of variance is
developed,and optimality properties are demonstrated. Several examples of TFB

designs are included but results on design construction are not included.

2. Notation, definitions and model. Let y treatments be applied to plots

arranged in b blocks, each of size k, k s v. Each plot receives only one

treatment and each treatment occurs at most once in a block. The plot positions




in a block are indexed by m-dimensional vectors of positive integers,
t= (tl, g tm), tu ) Sy» U= 1, ..., m, where Su is the number of

vlot positions in the u-th dimension, Hsu = k. The polynomial trend extending
u
over plots in each block is a function of the plot position t and is expressed
as a lincar function of m-dimensional orthogonal polynomials of the form,
m
)(tl’ il tm) = u£1¢au(tu), where ¢au(tu) is a one-dimensional

orthogonal polynomial of degree a, satisfying the orthogonality conditions, for
u=1, ..., m,

S,

u
(2.1) e €)=0
t=1 % Y
u
and
1 ifa =a',
Sy u u
(2.2) T ¢ul'1(tu) =

t =1 u 0 ifa =za'.
u u

u

Note that multidimensional orthogonal polynomials may be obtained as indicated

from one-dimensional ones and that k = # s . Tables of one-dimensional ortho-

gonal polynomials for equally spaced va:::bles are given by Fisher and Yates (1957).
The mathematical model is a simple extension of the classical model for

general block designs, trend terms added, and is written

v
i
(2.3) Yie =+ ) 8. T .48, + ) 0 ¢ R * 5.5
it js1 JE 1T g e it

4
4

i 21, seup, B k= (tl, o503 tm), e * : S0 U= Loy Wiy Wy

where yj£ is the observation on plot position t of block j, u, Ty and Bj are

respectively the usual mean, treatment and block parameters, A is an index set




of p, m-dimensional, non-zero vectors of the form g, and 8, is the regression

~

coefficient of ¢°(£). The trend effect on plot position t is Z 0 ¢a(£), not
- Qef ~ =

dependent on the particular block j. Designation of the treatment applied to
plot (j, t) is effected through the indicator function,

1 if treatment i on plot (j, t),

2.4) 8t =
~ 0 otherwise.

The errors Ejt are assumed to be i.i.d. with zero means and they will be taken

~

to be normal, N(O, 02), in discussions of distribution theory below. The model
(2.3) will be regarded as a fixed-effects model unless specifically stated to
be otherwise in particular remarks.

Choices of values of Git specify particular block designs. The construction

~

of TFB designs is the determination of values of the G;t to meet criteria to be

~

developed.

Some matrix notation will be needed. Let Ln be the identity matrix of

order n, 0

Besin be the m x n null matrix, J

be the m x n matrix with unit
~mxn

elements, Ln be the n-dimensional column vector with unit elements, and B @ C,

the Kronecker product of matrices B and C. Lexicographic order is defined:

Definition 2.1. Two distinct vectors of non-negative integer elements,

i-= (il’ sviy im) and j = (jl’ snivy jm) are in lexicographic order if i is
ordered before j whenever i) = Jgs eees ig ) = 0o qs i < g for some s,

1 <s <n. Several distinct m-element vectors are in lexicographic order if
all pairs of vectors are in lexicographic order.

The model (2.3) in matrix notation is

(2.5) Y=Ky+E=Xu+Xr+Xp+Xe+E




Y and £ being bk-element column vectors with elements Yje and €5t in subscript

~ ~

lexicographic order on (j, t), t' = (11, el els rv), g' = (81, ety Bb).

2' = (egl: cosy egp): I' = (u, Z" 5" Q')’ z = (zu: ZT’ %B: Ee)’ Kv - Lbk’
' = - - . g &
51 (Ai, s Qé), 53 Ib f lk’ Le Lb 8 ¢, where Aj is the k x y matrix with

~

G;t as the i-th element in row t and ¢ is the k x p matrix with ¢a(£) in row t

~

and colum g, o € /., and the rows of Aj and ¢ being in subscript lexicographic
order on t. For convenience, the vector-elements of o are taken also to be in

lexicographic order. Conditions (2.1), (2.2) and (2.4) imply:

(2.6) li $ = lep’
2,7 y T
2.7 8 e=1
(2.8) BB R LN

Note that each Aj is a permutation matrix in view of (2.8) and the fact that all

elements of Aj are 0 or 1.

Remark 2.1. It is necessary that p < k. From (2.7), since ¢ is k x p, the
rank of ¢ is p and it is necessary that k 2 p. If k = p, ¢ would be non-singular
contradicted by (2.6). Hence p < k. The number of orthogonal polynomials

defining the trend in (2.3) must be less than the number of plots per block.

3. A necessary and sufficient condition for a TFB design. The sums of

squares for treatments (adjusted for blocks if necessary), blocks (unadjusted),
and trend of the analysis of covariance for the design modelled by (2.5) or

(2.3) are considered. The general approach of Searle (1975) is used. A design

described by (2.5) is trend-free relative to the trend effects in that model




when the indicated treatment and block sums of squares may be calculated as though
the trend effects were omitted from the model.
Some additional notation is needed. Let the reduction from the sum of squares
Y'Y to the appropriate residual sum of squares due to a fitting of the general
r

linear model, Y = 51 + =, by least squares be denoted by R(Z)' Given an appro-

priate partition of X and vy,

<

= (51, Lz) and y' = (Yi’ yé), the model becomes

Y= &Y * &0 * £ and RO = R(py, y5). Let

(3.1) R(lyy) = RGOy 1) - RGyy)

represent the difference in reduction of sum of squares due to fittings of the

models, Y = Xy + S and Y = X.v, + E. In our problem, R(z|u, 8, 8) and R(8|u, 8)

1Y1
represent the desired treatment and block sums of squares and R(z|u, g) and
R(g[u) represent the corresponding sums of squares for the model like (2.5) with

trend effects deleted. The circumstances under which

(3.2) R(zlu, B, 8 = R(z|u, B)
and
(3.3) R(Blu, 8) = R(B|w)

are investigated.

The sums of squares in (3.2) and (3.3) are obtained by the Searle method.

We have

(3.4) R(I.Iu: g, 8) = X'Qlngil‘.{QlIs
= y! "y

(3.5) R(zlu, 8 = X'D,X QX'D.Y,

and

e e——————— A —




7
(3.6) R(Blu, 8) = R(BlW) = = Y'X.XIY - 1 (xv)?,
‘ » R k ~ gl " pkR,E)
where
(3.7) B = Ly - X3 (K% KL
and
(3.8) O -, LS, 2,
(3°9) ,&1 = (Lu: '&B’ ‘&9)’ xz - (Eu, LB)

and A” is a generalized inverse of a matrix A, AA'A = A. It is obvious from (3.6)

that the trend effects in the model (2.5) do not affect calculation of the
i

it
intuitively clear since trend effects have zero sums over plots within blocks

unadjusted block sum of squares nor do the values of the §, in Aj' This is

from (2.1) and the definition of ¢u(£). The ordinary block sum of squares cal-

culated from block totals results from (3.6). But (3.4) and (3.5) depend on

X_and hence may depend on the 5 We show that

T it

(3.5) does not depend on choices of the Git’ give a definition for the trend-free

when the model (2.5) applies.

concept, and develop a necessary and sufficient condition for a design to be
trend free.

Consider gi(gigi)'gi, i=1, 2, in (3.7). Searle (1971, p. 20) shows that
this quantity is invariant to the choice of the generalized inverse and it may be

verified that we may take

—

o 9 0
¥ 1 i ¢© %

SR LR L e D |
3 BR 2y




Then
R
By = Lk - % 2e%s - b Xode
(3.11) and
Bl te & e
R, =hok - & 2p%ee

; o
Since §T§T Dps

of replications of treatment i, and XX

-he diagonal matrix with i-th diagonal element L the number

g N, the v x b incidence matrix with

elements nij’ nij = 1, 0,as treatment i is, is not, in block j, gz and Qi do not

depend on the G;t' Since 5;! = T, the column vector of treatment totals and

~

] ~ : s _ ]

£T£u R, the column vector with i-th element rs, KTQZX does not depend on the
i
jt

~

§. nor does (3.5). Thus (3.5) depends only on the usual observation totals and
design parameters and is the usual treatment sum of squares for the block design
calculated in the absence of trend terms in the model (2.5).

We continue with an explicit definition and a theorem.

Definition 3.1. A block design modelled by (2.5) is trend-free relative to

the trend in the model if R(z|u, B, 8) = R(z|u, B).

Theorem 3.1. A necessary and sufficient condition for a block design to be

trend-free is that
(3.12) 5;59 = 0.

Proof. To prove necessity, equate (3.4) and (3.5), substitute from (3.7)

and (3.8), and obtain the equality,

X! - X!
v R1X 9 X:Ry = RoX QX Ry




Pre- and post-multiplication of both sides of (3.13) by 5; and 51 respectively

reduce the equality to Ql = 92 or, equivalently, to
(3.14) x; (@)

Use of (3.11) in (3.14) yields (3.12) to complete the proof of necessity.
To prove sufficiency, (3.12) is used with (3.11) to show that gl = 92 and

? - ' 3
that 5121 = 5122 and the equality of (3.4) and (3.5) follows.

Remark 3.1. The design construction problem may be reformulated. Note that

Xt = @

equivalent to

caiay Qé),where each Aj is a permutation matrix. Then (3.12) is

(3.15) JZAJ!Q =M= 0

where a, = ZQj. The matrix A, has non-negative integer elements such that all
row sums are b and column sums are ri, i=1, ..., v. The TFB design is con-
structed if 4, satisfying (3.15) is found first and then if b permutatior
matrices A. are found such that )A. = A .

~ Z"'J 4

)
Notice that (3.15) implies that

b S S :
(3.16) o e o 85, ¢ (®) = 0,
jsl1 t.=1 t=1 J% &

1 m

for all i =1, ..., v and all g € #. In a TFB design, the total effect of each

trend component over the plots assigned to any treatment is zero.

4. Optimality properties of TFB designs. Let us suppose that the primary

purpose of an experiment is to compare treatment effects. Then it is desirable

in most experiments that the treatment design matrix 51 be chosen such that each
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possible treatment difference, T m Ty i=4i',i,i'=1, ..., v, be estimable
under model (2.5) as stated or with trend components omitted. Designs with

such a property have been defined to be connected. The selection ofr.)gT may_ be
viewed as a two-stage process. The first stage is the determination of a way of

blocking specified by the incidence matrix N = XX, and the second stage is the

8
allocation of treatments to plots within blocks. In this section we decompose
the class of connected designs into subclasses with identical incidence matrices.
Given (2.5), optimality properties possessed by TFB designs within these sub-
classes are considered.
The following familiar optimality definitions are considered over the
subclass of connected designs vncermodel (2.5) with the same incidence matrix:
(i) A design is Vloptimal if the average variance of the estimators of all
elementary treatment contrasts, T T Tis is minimum.
(ii) A design is A-optimal if the trace of the covariance matrix of the
estimators of any v - 1 orthonormal treatment contrasts is minimum.
(iii) A design is D-optimal if the determinant of the covariance matrix of
(ii) is minimum.
(iv) A design is E-optimal if the largest c¢igenvalue ©f the covariance

matrix of (ii) is minimum.

4.1. Estimability and connectedness. Consider the model (2.5), first in

its general form, and a given non-null column vector u of constants with proper
dimension. It is well known that the definition of estimability implies that

u'y is estimable if and only if

(4.1) rk(u, X'X) = tk(X'X).

~ ~

N ——— - - — — —
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We use (4.1) with proper selection of u to determine a necessary and sufficient
condition for the estimability of a linear function of treatment parameters and
consequently for the connectedness of a design.

The least-squares normal equation associated with (2.5) is 5'5? = X'Y, where

~

o

X is the estiratorof y. Since N'L, = kL, NI, = R, and LiX'X, = 11X, = R1xp?

it reduces to

—— — —AT. e summ
L 1
bk R kLY 91xp " G
R D N X'X T =
(4.2) R T~0 k = ~ ;
]
k1, N kI, bep 8 B
. h
D1 XX Zoxb Me {3 ¥

where G = E&X, o= l;!: B = XgX, and § = XoX, arc the observation total and vectors

~ ~B~’

of treatment, block and trend totals respectively. Let

1 1
(4.3) 5 - (ngln ’L‘f’ i k~’ o —X'Z,e),

premultiply both sides of (4.2) by H, and obtain the reduced normal equation,

(4.4) Ct = Q,

1
4.5) € = By - B - BN,
and
1 1
(4.6) Q= HX'Y =T - NB - gXIXN.
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The matrix C in (4.4) plays a decisive role in the estimation of a linear
function of the treatment parameters and in the connectedness of a design under

model (2.5). A linear function a't may be represented by u'y with
LI 1
(4'7) E o (0’ E ’ leb. lep)»

a being a v-element column vector of constants. It may be shown that
(4.8) rk(g, X'X) = b + p + tk(z, )

by an argument similar to that of Chakrabarti (1962) for a model like (2.5)

with trend effects absent. If g = QVXI’

4.9) rk(X'X) = b + p + rkC.

Use of (4.8) and (4.9) in (4.1) demonstrates that a necessary and sufficient con-

dition for the estimability of a't is that
(4.10) rk(g, C) = rkC.

It follows further, through use of (4.10) and the argument by Raghavarao (1971,
Theorem 4.2.2), that a design represented by (2.5) is connected if and only if

155'. We summarize our

rkC = v - 1. For a TFB design C reduces to go =Dp - X

results:

Theorem 4.1. A TFB design under model (2.5) is connected if and only if
rk(gR - %ﬂﬂ') =v - 1. If a TFB design exists, imposed on a connected block
design with a model like (2.5) with trend effects absent, the TFB design is

connected under (2.5).
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4.2. Optimality properties. The main theorem on optimality follows:

Theorem 4.2. If a TFB design exists in a subclass of connected designs
with a given incidence matrix, the TFB design is V-, A-, D-, and E-optimal over
the subclass.

To prove Theorem 4.2, some preliminary results, definitions, and lemmas are
required.

It can be shown from (4.5) and (4.6) that

(4.11) E(Q) = Ct and Var(Q) = o°C.

If a't is estimable, it is uniquely estimated by g'i and hence

(4.12) E(a'1) = a'z and Var(g'z) = oza'gfg,

~

where g’ represents the Moore-Penrose inverse of C.

If any two square matrices A and B of the same order are considered, we
define A > B to mean that A - B is positive semidefinite. Evidently, A 2 0 means
that A is positive semidefinite. Let the trace, determinant and largest eigen-

value of A be trA, |A|, and Ay(A) respectively. The following lemmas assist in

proof of Theorem 4.2.

Lemma 4.1. [Milliken and Akdeniz (1977)]. 1If A and B are two symmetric

matrices of the same order and A 2 B 2 0, then g‘ 2 Q+ if and only if rk(A) = rk(B).

Lemma 4.2. For any two symmetric, positive semidefinite matrices A and B
of the same order v and the same rank n, if A 2 B, then

(1) tr@) 2 tr@d,

CEVIT WU I WP

(111) A, (B") 2 A (A") and A (KB'K") 2 A, (RA'K"),
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! 0 O el .
where K is any n x v matrix such that KA K' is positive definite.

Proof. Lemma 4.1 implies that §+ 2 A+ and hence §§+5' 2 55+x'. The proof

~

. L
of (i) is a consequence of the fact that each diagonal element of B  is not less

than the corresponding one of A+. The proof of (ii) follows from Rao (1973, p. 70).
The proof of (ii’) follows from the fact, given by Rao (1973, p. 62), that, for

any symmetric matrix H,

3

W™

~- !
L
~

") =
AM o) SSP

~

W

where x is any non-null column vector of proper dimension.

Lemma 4.3. If A is a symmetric, positive semidefinite matrix of order v,

then n tr(M) - 1'Ml1 2 0 for any n-square principal minor M of A.
~7 T A~ P N of A

Proof. Siice A is symmetric, positive semidefinite, so is M. Hence M may be

a covariance matrix of an n x 1 random vector, say ;. Let y' = (xl, <5 ois fn)

and M = (mij)‘ The lemma follows from the fact that the average variance of all
R LY s G 2 L g 5
g = xge 1 Y X, ) R ETE—:ij{n trM lnﬂln],ls nonnegative.

We may proceed to the proof of Theorem 4.2.

Proof of Theorem 4.2. For a connected design, every elementary treatment

contrast, Ty = Ty i<i', i, i' =1, ...,v, is estimable. From (4.12), we
see that
. y - vty g
Var(ri - ti,) =~ s i ™ ) 02,
% R e ; : +
where ¢ » i, i' =1, ...,Vv, is the (i, i')-element of C . Hence, the average

variance V of the estimators of all elementary treatment contrasts is

T — e
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L=t 1 2 1 - -~
V= .24 .E Var(-ri - i)
2 i=1 i'=1
i<i |
2 7-1 v
20 ii i'it ii!
(4.13) = = (o2 4 o - zcitYy
VoI = 3Y 301 5 ¥aiey

2
20 + +
- vr€) - LeL ).
We compare the general matrix C with go for the TFB design in the subclass

of block designs with common incidence matrix N and an existing TFB design:

+
(4.14) vier(C -C)) - ;J(C
by Lemma 4.3. Applying (4.13) to C and go, and using (4.14), we have

2 2
20 + b
____l).[v tr(Cy) - L'C

mﬁ_’_ﬁ[v er©) - 'L ] - 7R LciLl 2o,

which provesif-optimality.

Let [ be any (v - 1) x v matrix such that [T' = sv-l and Elv = g(v-l)XI'

Then [t is a vector of v - 1 orthonormal treatment contrasts and Var(1) =

o’¢'r’. since C* 2 p and IC'L' 2 IGHI', A-, D-, and E-optimality of the TFB

Co
design follow from (i), (ii), and (iii) respectively of Lemma 4.2.

The practical effect of Theorem 4.2 is to assure the user of TFB designs
that they will be optimal as indicated relative to model (2.5) in comparison with
the analysis of variance for the corresponding block design with treatments ran-

domized over plots within blocks. The user of the TFB designs benefits also from

the simpler available analysis of variance calculations.
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5. Analysis of variance of TFB designs. Calculations and justifications

for the analysis of variance of TFB designs may be developed by standard methods.
A TFB design is derived from a standard block design for which the model is

= guu + EBE + 511 + =, model (2.5) with trend terms deleted, and an analysis
of variance table is available. That standard analysis of variance is used to
obtain sums of squares for treatments (adjusted for blocks if necessary) and
blocks (unadjusted) and the corrected total sum of squares for the analysis of
variance of the TFB design with model (2.5). The sum of squares for trend with
p degrees of freedom, when model (2.5) applies, is {'W/b, W = 56!. The error
sum of squares is obtained by subtraction. The sum of squares for trend is
partitioned easily into components, Wi/b, i=1, ..., p, each with one degree
of freedom.

while the paragraph above describes the necessary calculations, the general

analysis of variance for a TFB design is displayed in Table 1. In that table,

G, T and B are as defined for (4.2) and

1
F=20'X' (eXg -~ gX,50%8¢ S

The sums of squares are independent and, when divided by 02, have chi-square
distributions with degrees of freedom (d.f.) given in Table 1 and non-centrality
parameters obtainable from the expected mean squares of the table, expected
mean square divided by 02 less one.

Table 1 is simplified in well known simple situations. For a TFCB design,

k = v and T, = b, i=1, ..., v, and then

Pe Vg (L - gl So 7 B, - A,

'--1 "7 1 ' = -
0ge - 4T - B g,
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For a TFBIB design with parameters v, b, k, r and A,

-A\L _l (Toli ...kv
Vi 4 €0t T k). Q'ER = AVQ Q2
Av 1
' ~ ' = =1 Ay = =
Cut e (;V vivlv)l’ and rkC0 v 1
TABLE 1

General Analysis of Variance for a TFB Design, Model (2.5)

Source of d.f. Sum of Squares Expected lMean
Variation Square
Blocks b-1 (B'B-36)/k o2+F/ (b-1)
(unadjusted)

= 2
Treatments rkC Q'C o +(x'C, 1) /TkC
(adjusted) ¥ o e g
Trend Term 1 1 Wf/b 02+be§
Trend Term p 1 W;/b 02+be;
Error bk—b-p-rkg0 By Subtraction 02
Total bk-1 Y'Y-G2/bk —eas

Remark 5.1. The TFB designs developed for model (2.5) are trend-free also
if treatment or block effects are random rather than fixed. Theorem 3.1 holds
for random or mixed effects models since condition (3.12) does not depend on
distributional assumptions on Y. Expected mean squares in Table 1 would require
minor reexpression for a model with random treatment or block effects. When
block effects are random and treatment effects are fixed, treatment comparisons

may still be made and the demonstrated optimality properties of TFB designs

apply.

e ———— ——
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6. Examples.
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trend, a TFB design may or may not exist.

Given an incidence matrix for a block design and a polynomial

Existence theorems and design con-

struction will be discussed in a subsequent paper.

below, one a TFZCB design and one a TF

represent treatments and rows represent blocks.

1

BIB design.

Two examples are given

I

n the arrays below, letters

Orthogonal trend components,

without normalization, are given in the upper rows of the arrays.

Example 1: A TF,CB design, V=17, b =4, p = 2:

7 -5 -3 -1 1 3 5 7
7 1 -3 -5 -5 -3 1 7
A B C D E F G H
G H B A © D F E
F E H G B A D C
D C E F H G A B
Example 2: A TFIBIB design, v=5,b=10, k=3, r=6, A =3, p=1
-1 0 1
A B C
A B D
A B B
(o D A
C E A
D E A
D B C
E B c
E B D
C D E
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